1. Question: Let X be a topological vector space over the field \mathbb{C} . Suppose $f : X \to \mathbb{C}$ is a linear functional. Show that f is continuous iff ker(f) is closed in X.

Solution: See Rudin Functional analysis book Th 1.18 and page no 15.

2. Question: Suppose K is a compact subset of a topological vector space Z. Show that K - K is compact.

Solution: Consider the map $\Phi: Z \times Z \mapsto Z$ defined as $\Phi(x, y) = x - y$

3. Question: Let X be a separable Banach space with countable dense set $\{x_n : n \ge 0\}$. For $n \ge 1$, let f_n be a linear functional on X satisfying $f_n(x_n) = ||x_n||$, and $||f_n|| = 1$. Define $T : X \mapsto l^{\infty}$ by $T(x) = (f_1(x), f_2(x), ...,)$. Show that T is an isometry.

Solution: Note that $|f_i(x)| \le ||f_i|| ||x||$ for all $x \in X$. It follows that $||T(x)|| \le ||x||$ for all $x \in X$. Observe that

$$\|T(x_n)\| = \sup\{|f_i(x_n)| : i \in \mathbb{N}\}$$
$$\geq |f_n(x_n)|$$
$$= \|x_n\|$$

Therefore $||T(x_n)|| = ||x_n|| \forall n \in \mathbb{N}$. By the conitinuity of T and the denseness of $\{x_n : n \in \mathbb{N}\}$ it follows that $||T(x)|| = ||x|| \forall x \in X$.

4. Question: Let X, Y be normed linear spaces and let X be finite dimensional. Suppose $T : X \mapsto Y$ is a linear map. Show that T is continuous.

Solution: Let $e_1, e_2, ..., e_n$ be a basis for X. Then it follows that $||T(x)|| \le \alpha ||x||_1$ where $\alpha = max\{||T(e_1)||, ||T(e_2)||, ..., ||T(e_n)||\}$.

5. Question: Let X, Y be Banach spaces. Let $T : X \mapsto Y$ be a bounded linear map and T is onto. Show that T is an open map.

Solution: Open mapping theorem.

6. Question: Let V be a topological vector space. A non-empty subset A of V is said to be absorbing if for each $x \in V$, there exists a t > 0 such that $\frac{x}{t}$ is in A. Show that every open neighborhood of 0 is absorbing. Show that every $y \neq 0$ has an open neighborhood which is not absorbing.

Solution: Let *A* be a nbhd of 0 and $x \in V$, then there exists a $\delta > 0$ and some nbhd *B* of *x* such that $\beta B \subset A$ whenever $|\beta| < \delta$. There exists a $t_0 > 0$ such that $\frac{1}{t_0} < \delta$ and for this t_0 we have $\frac{x}{t_0} \in A$. For $y \neq 0$ there exists a nbhd *A* which does not contain 0. There exists no t > 0 such that $\frac{0}{t} \in A$. This proves that *A* is not absorbing.

7. Question: Let C[0, 1] be the Banach space of complex valued continuous functions on the interval, with the supremum norm. Let $C_0[0,1]$ be the subspace: $C_0[0,1] = \{f \in C[0,1] : f(0) = 0\}$. Identify the set of extreme points of closed unnit balls of C[0,1] and $C_0[0,1]$.

Solution:

f is an extreme point if and only if $|f(x)| = 1 \ \forall x \in [0,1]$. Unit ball of $C_0[0,1]$ has no extreme points.